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Abstract
An iterative method due to Voslamber is reconsidered. It provides successive
approximations for the logarithm of the time–displacement operator in quantum
mechanics. The procedure may be interpreted, a posteriori, as an infinite re-
summation of terms in the so-called Magnus expansion. A recursive generator
for higher terms is obtained. From two illustrative examples, a detailed
comparative study is carried out between the results of the iterative method
and those of the Magnus expansion.

PACS numbers: 02.30.Mv, 03.65.Nk, 03.65.Db, 03.65.Fd, 02.30.Hq
Mathematics Subject Classification: 81Q15, 81V99, 41A58

1. Introduction

More than 50 years ago Wilhelm Magnus in a much celebrated article [1] proposed an
exponential representation for the solution to the linear matrix non-autonomous differential
equation Ẋ = A(t)X. The main difficulty in achieving this aim arises from the fact that
the matrices A evaluated at different values of t are, in general, non-commuting. Since
then, the issue has become increasingly popular. In quantum mechanics, the time-evolution
operator U(t, 0) satisfies an equation of that type and then we can look for its exponential
representation U(t, 0) = exp �(t, 0). Usually � is expanded in a series

∑
�n, where �n

is of order n in the Hamiltonian, a reason why this Magnus expansion is sometimes named
exponential perturbation theory. Its most prized feature is probably that it exactly preserves
the unitary character of the evolution operator to any order of approximation. In the general
case when the evolution is ruled by a time-dependent Hamiltonian the exponent � is given in
terms of multiple integrals of nested commutators of the Hamiltonian.

Over the years, the Magnus expansion has been applied to a wide range of problems in
quantum mechanics from atomic to high energy physics, or nuclear magnetic resonance1. It
1 A list of applications of the Magnus expansion can be found, for instance, in [3, 13].
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has also been used for the determination of the evolution operator in an algebraic setting of
classical mechanics [2]. The more mathematical questions on existence and convergence of
Magnus expansion have also witnessed recent progress [3–5]. More recently, the Magnus idea
has extended its domain of applications and has originated very interesting algorithms in the
field of geometric integration of differential equations in numerical analysis [6, 7].

Apart from the Magnus expansion, and more or less directly related to it, one can find in
the literature other exponential-like representations of U. Thus, in the Wilcox infinite-product
representation U = eW1 eW2 · · · [8, 9], every term Wn is of order n. Instead, in the Fer infinite-
product representation of U = eF1 eF2 · · · [9, 10], every contribution Fn is obtained from Fn−1

and H, and contains terms of order 2n−1 and higher (with the exception of F1, which is of first
order).

In this paper, we explore a different approach to the approximate determination of �.
The basic idea we shall use appears in an interesting, but surprisingly unnoticed, paper by
Voslamber [11]. In it, the exponent � in U is obtained by an iterative algorithm built from
Magnus expansion. To properly appreciate the distinguishing traits of the Voslamber proposal
some comments are in order. The most conventional approach to the solution of the matrix
differential equation Ẋ = A(t)X by power series expansion proceeds in two steps: first write
it as an integral equation and second iterate to the desired order. From the point of view of this
paper two facts should be noted. The iterative (Picard) method is linear, i.e. the output for a
linear combination of two inputs is the linear combination of the corresponding outputs. This
procedure gives rise to the common perturbation theory. Furthermore, when the iteration is
carried out to a certain finite order essential qualitative properties of the exact solution are lost,
e.g., the unitary character of the evolution operator. At variance with that situation, Voslamber
method uses a nonlinear iterative algorithm which will automatically include in each step
higher order terms. At the same time because it deals with the exponent �, it keeps the
unitary character at any order of approximation. How all this is achieved will be explained in
section 2, where Voslamber approach is reviewed and the basic equations are obtained in a
different way. The connection with Magnus expansion is also reported. In section 3, we
will present a recursive algorithm for the calculation of the main ingredient of the method, an
issue only tangentially touched upon in Voslamber original paper. In section 4, application
to two simple problems in quantum mechanics will be considered to assess the performance
of the method. In particular, both modulus and relative phase of the matrix elements of the
evolution operator as given by Voslamber and Magnus methods will be compared with the
exact solution.

2. The method

Consider the time-dependent Schrödinger equation

U̇ (t, 0) = H̃ (t)U(t, 0) U(0, 0) = I (1)

where H̃ ≡ H/ih̄ is anti-Hermitian. H(t) is the Hamiltonian of the system and U(t, 0) stands
for the unitary time-evolution operator.

Following the usual setting to derive Magnus expansion [1, 8], we introduce the
exponential representation U(t, 0) = exp �(t, 0) (with the initial condition �(0, 0) = 0)
of the time–displacement operator into (1). In the present case � is anti-Hermitian. This will
provide the corresponding differential equation for �. To this end, we use the Wilcox formula
[8] for the derivative of the exponential of an operator

∂

∂t
e� =

∫ 1

0
ex��̇ e(1−x)� dx =

∫ 1

0
e(1−x)��̇ ex� dx. (2)
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The new variable y = 1
2 − x in the integrals above and equation (1) yields the new result∫ 1/2

−1/2
e−y� e�/2�̇ e−�/2 ey� dy = H̃ . (3)

Note that both forms in Wilcox’s formula lead to the very same equation after some elementary
simplifications. Next, let us define what we call the dressed derivative of �:

� ≡ e�/2�̇ e−�/2. (4)

We will use the well-known Baker–Hausdorff formula [8]

eXY e−X =
∞∑

n=0

1

n!
adn

XY, (5)

where the adjoint operator is defined in terms of the commutator as adXY ≡ [X, Y ], and
adn

X = adX(adn−1
X Y ), ad0

XY = Y . Then equation (3) becomes
∞∑

k=0

1

(2k + 1)!22k
ad2k

� � = sinh(ad�/2)

ad�/2
� = H̃ . (6)

Consequently,

� = ad�/2

sinh(ad�/2)
H̃ =

∞∑
k=0

Bk(1/2)

k!
adk

�H̃ , (7)

where use has been made of the Taylor series

t ext

et − 1
=

∞∑
k=0

Bk(x)

k!
t k (8)

in terms of Bernoulli polynomials Bk(x) [12]. Taking into account the connection with
Bernoulli numbers Bk(1/2) = −(1 − 21−k)Bk , equation (7) becomes

� =
∞∑

k=0

21−k − 1

k!
Bkadk

�H̃ =
∞∑

n=0

21−2n − 1

(2n)!
B2nad2n

� H̃ . (9)

This expression has been derived by Voslamber in a rather different way [11] (we note in
passing his unconventional notation for Bernoulli numbers). The dressed derivative � is the
central element in what follows, whereas the conventional Magnus expansion proceeds instead
with �̇. As a matter of fact, if we introduce definition (4) for � in either (7) or (9) then, after
some algebra, we obtain right the differential equation for the operator � involved in the
Magnus method

�̇ = ad�

exp(ad�) − 1
H̃ , (10)

as expected.
Suppose that H is of first order in a parameter λ, which we make explicit by writing λH

instead of H. Suppose also that � and � can be developed in power series of λ for some
finite time interval and sufficiently small λ, i.e., �(t) = ∑∞

n=1 λn�n(t), just as in the Magnus
expansion, and �(t) = ∑∞

n=1 λn�n(t), with the initial condition �n(0) = 0. Introducing both
expansions into (9) and gathering terms with the same λ powers we obtain �k as a function of
�n with n � k − 2. The first four terms in the � power expansion read

�1 = H̃ (11)

�2 = 0 (12)
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�3 = − 1
24 [�1, [�1, H̃ ]] (13)

�4 = − 1
24 ([�1, [�2, H̃ ]] + [�2, [�1, H̃ ]]). (14)

In the next section, we will dwell on the practical calculation of the terms �k .
If we introduce the power series expansions for � and � into equation (4), use the Baker-

Hausdorff formula and the explicit expressions for �k , it is also possible to obtain the various
terms �n in Magnus expansion which constitutes simply a consistency check. However, the
idea here is to use equation (4) otherwise by building up an iterative procedure. From definition
(4), we write

�̇ = e−�/2� e�/2. (15)

Once the terms �k are known in terms of nested commutators of �n (n � k − 2) with H̃ , we
arrange the following iterative procedure. For the sake of simplicity in the notation, we shall
occasionally write U(t) ≡ U(t, 0),�(t) ≡ �(t, 0) · · ·. The nth level approximant �[n] is
defined by

�[n] =
∫ t

0
exp[−�[n−1](t ′)/2]�[n](t ′) exp[�[n−1](t ′)/2] dt ′, n = 1, 2, . . . (16)

with �[n] = ∑n
1 λn�n and the seed �[0] = 0. The two first approximants read explicitly

�[1](t) = �1(t) =
∫ t

0
H̃ (t ′) dt ′ (17)

�[2](t) =
∫ t

0
e−�1(t

′)/2H̃ (t ′) e�1(t
′)/2 dt ′. (18)

Thus, the time–displacement operator is approximated in the Magnus expansion as U �
exp

(∑n
k=1 �k

)
, and the Voslamber iterative algorithm approximates U � exp �[n]. In view

of the Baker–Hausdorff formula (5), �[n] gets contributions from an infinity of orders in λ,
whereas �n is strictly of order λn. This behaviour for �[n] is a direct consequence of the
nonlinear character of the iterative procedure (16). The iterate �[n] contains

∑n
1 λk�k exactly.

It also contains higher powers λm(m > n) but the contribution of order λm is only part of that
in �m for m > n.

One could rightly ask whether the iterates (16) tend to a fixed point when n → ∞, which
should be the exact solution of the Magnus equation (10). To this respect we can only give a
formal answer by pointing out that since �[n] contains

∑n
1 λk�k , then in the limit n → ∞,�[n]

should tend to �, provided it exists.
The issue to be analysed then is whether this arrangement will result in an improved

approximate time–displacement operator with respect to the Magnus expansion. In a
summarized way, we conclude that �[n] may be interpreted as a re-summation of the Magnus
expansion, as the result of the iterative procedure. Its net effect on the approximate solution
remains to be analysed.

3. Recursive generation of higher order terms Γn

We turn now our attention to the more practical question of how to calculate �k , which are
the building blocks of the process. The terms �n appearing in the computation of �k are
right those determined by the Magnus expansion, and may be obtained by well-established
methods. Using the notation H̃ (ti) ≡ H̃ i , the first four orders read
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(i) �̇1 = H̃ so that

�1(t, t0) =
∫ t

t0

dt1H̃ 1. (19)

(ii) �̇2 = − 1
2 [�1, H̃ ]. Thus,

�2(t, t1) = 1

2

∫ t

t0

dt1

∫ t1

t0

dt2[H̃ 1, H̃ 2]. (20)

(iii) �̇3 = − 1
2 [�2, H̃ ] + 1

12 [�1, [�1, H̃ ]]. After some work and using the formula

∫ α

0
dx

∫ x

0
f (x, y) dy =

∫ α

0
dy

∫ α

y

f (x, y) dx (21)

we obtain

�3(t, t0) = 1

6

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3{[H̃ 1, [H̃ 2, H̃ 3]] + [[H̃ 1, H̃ 2], H̃ 3]}. (22)

(iv) �̇4 = − 1
2 [�3, H̃ ] + 1

12 [�2, [�1, H̃ ]] + 1
12 [�1, [�2, H̃ ]], which yields

�4(t, t0) = 1

12

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4{[[[H̃ 1, H̃ 2], H̃ 3]H̃ 4]

+ [H̃ 1, [[H̃ 2, H̃ 3], H̃ 4]] + [H̃ 1, [H̃ 2, [H̃ 3, H̃ 4]]] + [H̃ 2, [H̃ 3, [H̃ 4, H̃ 1]]]}.
(23)

A recursive procedure for obtaining �k , provided the Magnus expansion terms are known,
follows next.

The recursive generator for �n, turns out to be similar to that of the Magnus expansion for
�̇n [13], and may be easily built up. Substituting the dressed derivative series � = ∑∞

j=1 λj�j

and the Magnus series � = ∑∞
j=1 λj�j into equation (7) and equating terms of the same

order one gets

�1 = H̃

�n =
n−1∑
j=1

Bj(1/2)

j !
S(j)

n , n � 2,
(24)

where we have defined

S(k)
n =

∑ [
�i1 ,

[ · · · [�ik , H̃
] · · · ]], (i1 + · · · + ik = n − 1). (25)

Note that in the last equation the order n in H̃ has been explicitly reckoned, whereas k represents
the number of �’s. The newly defined operators S(k)

n can again be calculated recursively. The
recurrence relations are given by

S(j)
n =

n−j∑
m=1

[
�m, S

(j−1)
n−m

]
, 2 � j � n − 1

S(1)
n = [�n−1, H̃ ], S(n−1)

n = adn−1
�1

H̃ .

(26)
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4. Illustrative examples

For the sake of illustration of the method we shall apply the iterative procedure and the Magnus
expansion to two simple examples frequently encountered in the literature. As a first instance
of application, we shall consider the linearly driven harmonic oscillator, for which it is well
known [14] that the Magnus expansion reduces to two terms, namely � = �1 + �2, and
provides the exact time-evolution operator U. The second example we shall consider is a
particle of spin 1/2 in a constant magnetic field (double Stern–Gerlach experiment).

The Hamiltonian of the driven harmonic oscillator is

H(t) = h̄ωa†a + f (t)(a† + a), [a, a†] = 1 (27)

where f (t) is an unspecified function of time and a†, a are the usual raising and lowering
operators. In the Dirac interaction picture the Hamiltonian reads

HI(t) = f (t)(eiωta† + e−iωta). (28)

In this particular case the fact that the commutator [a, a†] is a c number greatly simplifies the
procedure. Magnus series terminates (�n = 0, n > 2). Correspondingly the fixed point of
the iteration (16) is �[2]. Either the iterate or the second-order approximation both leads to
the exact solution

UI (t) = e�[2] = e�1+�2 = e−iη e−iαa†−iα∗a (29)

where

α(t) ≡ 1

h̄

∫ t

0
f (t ′) dt ′, (30)

η(t) ≡ 1

h̄2

∫ t

0
dt2

∫ t2

0
f (t1)f (t2) sin[ω(t1 − t2)] dt1. (31)

In the second example, we consider the two-level system described by the Schrödinger
equation (1) with Hamiltonian

H = − 1
2h̄ωσz + f (t) σx (32)

where f (t) describes a rectangular mound: f (t) = 0 for t < 0 and f (t) = V0 for t > 0; h̄ω

is the energy difference between the two levels and σx, σy, σz are Pauli matrices. As is well
known, this system admits the exact solution

U(t, 0) = exp

[
i

(
ω

2
σz − V0

h̄
σx

)
t

]
(33)

for t > 0.
The Dirac interaction picture is defined here by the explicit integration of the diagonal

piece in the Hamiltonian, which can be carried out with the factorization

U = exp(iωσzt/2)UI , (34)

where UI stands for the time–displacement operator in the Dirac picture and obeys

U̇I = H̃ IUI , UI (0, 0) = I (35)

with

HI = f (t)(σx cos ωt + σy sin ωt). (36)

Our purpose is to obtain approximate expressions for UI based on both the iterative
approach and the Magnus expansion. As a first test, we shall compute the transition probability
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P(t) from an initial state with spin up to a state with spin down (or vice versa), in the interaction
picture, given by

P(t) = |〈−|UI (t)|+〉|2 (37)

where |±〉 are the normalized eigenvectors of σz, with eigenvalues ±1. The expression (37) will
be computed on assuming: UI � exp �[1] = exp �1, UI � exp(�1 + �2) and UI � exp �[2],
and the results compared with the exact analytical solution from (33)

P(t) =
[

2ρ

γ
sin

ξγ

2

]2

, γ ≡
√

1 + 4ρ2, (38)

where ρ = V0/h̄ω and ξ = ωt .
The transition probability above provides a test about the modulus of UI matrix elements.

Instead, an observable like |〈x|UI (t)|+〉|2, with |x〉 ≡ (|+〉 + |−〉)/√2 an eigenstate of σx ,
involves relative phases among matrix elements. Thus, we compute ϕ21 − ϕ11, with the
notation (UI )jk = |ujk| exp(iϕjk), as a second test. The exact solution furnishes the result

ϕ21 − ϕ11 = ξ − π

2
− tan−1

(
1

γ
tan

ξγ

2

)
. (39)

The first iterate and the first-order Magnus expansion coincide, �1 = �[1], and from (17)
they read

�1 = �[1] = −iρ[σx sin ξ + σy(1 − cos ξ)]. (40)

For the second-order Magnus operator �2 one has from (20)

�2 = −iρ2(sin ξ − ξ)σz. (41)

The corresponding second-order Magnus approximation to the transition probability is then

PM =
[

2

β
sin(ξ/2) sin(ρβ)

]2

, (42)

with β2 ≡ 4 sin2(ξ/2) + ρ2(sin ξ − ξ)2. The transition probability up to first order of
approximation may be obtained removing the terms proportional to ρ2 in (42). For relative
phases we have ξ − π

2 for the first-order approximations and the following result:

ξ − π

2
− tan−1

[
ρ

η
(ξ − sin ξ) tan(ρη)

]
, (43)

with η2 ≡ 4 sin2 ξ + ρ2(sin ξ − ξ)2, for the second-order Magnus approximation.
Finally, the second iterate is obtained from equation (18)

�[2](t) = −iρ
∫ ωt

0
{[sin2(�) + cos2(�) cos ξ ]σx

+ cos2(�) sin ξσy − sin(2�) sin(ξ/2)σz} dξ (44)

where � ≡ ρ| sin(ξ/2)|. Since it does not seem possible to derive an analytical expression
for �[2], the corresponding matrix elements have been computed numerically.

In figure 1, the various approximated transition probabilities as well as the exact result (38)
have been plotted as a function of ξ (i.e., the dimensionless width of the rectangular mound)
for a fixed value of the product ξρ = 1.3 (i.e., for a fixed area of the mound). We observe that
the second iterate keeps the trend of the exact solution in a better way than the second-order
Magnus approximation does. In contrast to this, note that the second-order correction fades
with increasing ξ .



4230 J A Oteo and J Ros

Figure 1. Transition probability in the two-level system as a function of ξ , for ρξ = 1.3: exact
result (solid line), second iterate (dashed line), second-order Magnus expansion (dotted line) and
first iterate (or order in Magnus expansion) (dashed–dotted line).

Figure 2. Transition probability in the two-level system as a function of ρ, for ξ = 1. Lines are
coded as in figure 1.

In figure 2, we have plotted the corresponding transition probabilities versus ρ for fixed
value ξ = 1. Although locally the second-order Magnus approximation may be more accurate,
it seems that the trend of the exact solution is mimicked for a longer ρ interval by the second
iterate.

As is well known, the Magnus expansion works the better the more sudden the
perturbation. Thus, the re-summation involved in the iterative method somewhat improves
that issue.

In figures 3 and 4, we have plotted the cosine of the different relative phases between
matrix elements u21 and u11 of UI . As their computation involves the multi-valued function
arctan discontinuities may appear when representing ϕ as a function of either ρ or ξ . We
have chosen to impose continuity of phases rather than use the principal value of arctan. This
choice makes easier the comparison of results. In figure 3, the relative phase is represented
versus ξ , keeping fixed the value ξρ = 1.3, just as in figure 1. In figure 4, the relative phase
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Figure 3. Relative phase in the two-level system as a function of ξ , for ρξ = 1.3. Lines are coded
as in figure 1.

Figure 4. Relative phase in the two-level system as a function of ρ, for ξ = 1. Lines are coded as
in figure 1.

is plotted versus ρ with a fixed value ξ = 1, just as in figure 2. First of all, we observe in
both plots that the approximation of phases is a more delicate issue than that of modulus. We
see that the iterative approach provides a remarkable improvement with respect to the Magnus
expansion.

5. Conclusions

In this paper, the iterative algorithm proposed more than 30 years ago by Voslamber has been
analysed in view of the recent revived interest in Magnus expansion. Concerning the general
properties of the iterative method, a recursive procedure for its main ingredient, what we have
called a dressed derivative, has been given. It has also been pointed out that the iteration
includes automatically partial sums of higher order terms from Magnus expansion, of course
at the expense of much more computational effort. The examples we have worked out allow a
detailed comparison between the iterative and Magnus schemes. The results for the two-level
system indicate that the iterative algorithm improves the efficiency of the approximation. For
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Table 1. Schematic relationship among the four exponential-like representations of U. First column
indicates the type: single or infinite product of exponentials. BCH refers to the Baker-Campbell-
Hausdorff formula.

U(t) Exponential perturbation theory Iterative scheme Approximation stays in:

e�(t) Magnus Voslamber Lie algebra

 
 ↓

via BCH × exp

 
 ↓∏∞

1 e�k(t) Wilcox FER Lie group

the forced harmonic oscillator, the second order of the Magnus expansion is known to yield
the exact result and the same is true for the iterative method.

Although not considered here, the extension of the iterative method to more general linear
systems should not present huge difficulties.

The Voslamber iterative method could be added to a list of three exponential-like
expansions named after Magnus, Wilcox and Fer, in the literature. Some comparison or
parallelism may be established among these four. Thus, whereas Magnus and Voslamber
algorithms work with the exponent of a single exponential to represent the time-evolution
operator, the Wilcox and Fer methods operate with an infinite product of exponentials.
Furthermore, the Magnus and Wilcox expansions can be formally connected via the repeated
use of the Baker–Campbell–Hausforff formula [9], which combines the product of two
exponentials into a single one, and are to be properly considered as true exponential
perturbation theories. Instead, the Voslamber and Fer methods, being both iterative in nature,
do not proceed order by order in the expansion parameter as it progresses. These ideas are
collected in table 1, in which we explain the type of representation for U that the various
methods use as well as the connections one can establish among them. Observe that in the
Magnus and Voslamber schemes we approximate the exponent by either a truncation of a
series or stopping the iteration, respectively. In both cases we move in a Lie algebra, which
after exponentiation leads us to the corresponding Lie group. Instead, in the Wilcox and Fer
schemes we approximate the infinite-product representation of U by a finite number of factors,
which means that we are already in the Lie group. These facts are reflected in the last column
of the table.
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